# A new characterization of injective and surjective functions and group homomorphisms 

Andrei Tiberiu Pantea*


#### Abstract

A model of a function $f$ between two non-empty sets is defined to be a factorization $f=\pi \circ i$, where $\pi$ is a surjective function and $i$ is an injective function. In this note we shall prove that a function $f$ is injective (respectively surjective) if and only if it has a final (respectively initial) model. A similar result, for groups, is also proven.


Keywords: factorization of morphisms, injective/surjective maps, initial/final objects

MSC: Primary 03E20; Secondary 20A99

## 1 Introduction and preliminary remarks

In this paper we consider the sets taken into account to be non-empty and groups denoted differently to be disjoint. For basic concepts on sets and functions see [1]. It is a well known fact that any function $f: A \rightarrow B$ can be written as the composition of a surjective function followed by an injective function. Indeed, $f=f^{\prime} \circ i d_{B}$, where $f^{\prime}: A \rightarrow \operatorname{Im}(f)$ is the restriction of $f$ to $\operatorname{Im}(f)$ is one such factorization. Moreover, it is an elementary exercise to prove that this factorization is unique up to an isomorphism: i.e. if $f=i \circ \pi, i: A \rightarrow X, \pi: X \rightarrow B$ is another factorization for $f$, then we easily see that $X=i^{-1}(\operatorname{Im}(f))$ and that $\pi=i^{-1} \circ f^{\prime}$. The purpose of this note is to study the dual problem. Let $f: A \rightarrow B$ be a function. We shall define a model of the function $f$ to be a triple $(X, i, \pi)$ made up of a set $X$, an injective function $i: A \rightarrow X$ and a surjective function $\pi: X \rightarrow B$ such that $f=\pi \circ i$, that is, the following diagram is commutative.
A model ( $X, i, \pi$ ) for the function $f$ is called an initial model if for any other model $(Y, j, p)$ of the function $f$ there is a unique function $g: Y \rightarrow X$ such that $g \circ j=i$ and $p \circ g=\pi$. A model $(X, i, \pi)$ for the function $f$ is called a final model if for any other model $(Y, j, p)$ of the function $f$ there is a unique function $g: X \rightarrow Y$ such that $g \circ i=j$ and $\pi \circ g=p$.

[^0]

Remark 1.1. For any function $f: A \rightarrow B$, there is at least one model.
We may consider that $A$ and $B$ do not have any elements in common, otherwise, just consider a set $B^{\prime} \cong B$. Indeed, it is easy to see the remark is true if we consider $X=A \cup B$, consider $i$ to be the canonical injection and define

$$
\pi(x)=\left\{\begin{array}{ll}
f(a), & \text { if } a \in A \\
b, & \text { if } b \in B
\end{array} .\right.
$$

## 2 Initial and final models of a function

The next theorem gives a new characterization of injective and surjective maps.
Theorem 2.1. Let $f: A \rightarrow B$ be a function. Then:
a) $f$ has a final model if and only iff is injective.
b) $f$ has an initial model if and only if $f$ is surjective.

Proof. a) $\quad " \Longleftarrow "$ Let $f$ be an injective function. In this case, $\left(B, f, i d_{B}\right)$ is obviously a model for $f$ and we will now show that it is a final model. Let ( $Y, j, p$ ) be another model. We want there to be a unique function $g: Y \rightarrow B$ such that $g \circ j=f$ and $i d_{B} \circ g=p$. The existence is obvious since $g=p$ satisfies the relations. The uniqueness is given by the fact that $i d_{B} \circ g=p$, and so the unique function that satisfies this is $g=p$.
$" \Longrightarrow$ " Let $f: A \rightarrow B$, assume ( $X, i, \pi$ ) is a final model of $f$ and $\alpha \notin X$. Suppose $f$ is not injective. Therefore, there are two elements of $A, a_{1} \neq a_{2}$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Let $Y=$ $X \cup\{\alpha\}$. We define $j: A \rightarrow Y$ and $p: Y \rightarrow B$ such that

$$
j(a)=i(a) \quad \text { and } \quad p(x)=\left\{\begin{array}{ll}
\pi(x), & \text { if } y \in X \\
f\left(a_{1}\right), & \text { if } y=\alpha
\end{array},\right.
$$

$\forall a \in A$ and $\forall y \in Y$.
With this construction, $(Y, j, p)$ is a model for $f$ as $\forall a \in A$,

$$
(p \circ j)(a)=p(j(a))=p(i(a))=\pi(i(a))=f(a),
$$

since $i(a) \in X$ and $(X, i, \pi)$ is a model for $f$. We now define $g_{1}, g_{2}: Y \rightarrow X$ as

$$
g_{1}(y)=\left\{\begin{array}{ll}
y, & \text { if } y \in X \\
i\left(a_{1}\right), & \text { if } y=\alpha
\end{array} \text { and } \quad g_{2}(y)=\left\{\begin{array}{ll}
y, & \text { if } y \in X \\
i\left(a_{2}\right), & \text { if } y=\alpha
\end{array}\right. \text {. }\right.
$$

Then $g_{1} \neq g_{2}$, since $i\left(a_{1}\right) \neq i\left(a_{2}\right)$ because $i$ is injective. We are now going to prove that $g_{1}$ and $g_{2}$ are morphisms of models (i. e. the triangles are commutative) which contradicts the hypothesis that $X$ is a final model ( $X$ is final $\Longrightarrow g_{1}=g_{2}$ ). Firstly,

$$
\left(g_{1} \circ j\right)(a)=g_{1}(j(a))=g_{1}(\underbrace{i(a)}_{\in X})=i(a),
$$

$\forall a \in A$, which means that $g_{1} \circ j=i$ and, analogously, $g_{2} \circ j=i$. Now, for $y \in Y$ we have

$$
\left(\pi \circ g_{1}\right)(y)=\pi\left(g_{1}(y)\right)=\left\{\begin{array}{ll}
\pi(y), & \text { if } y \in X \\
\pi\left(i\left(a_{1}\right)\right), & \text { if } y=\alpha
\end{array}=\left\{\begin{array}{ll}
\pi(y), & \text { if } y \in X \\
f\left(a_{1}\right), & \text { if } y=\alpha
\end{array}=p(y)\right.\right.
$$

and, analogously,

$$
\left(\pi \circ g_{2}\right)(y)=\pi\left(g_{2}(y)\right)=\left\{\begin{array}{ll}
\pi(y), & \text { if } y \in X \\
\pi\left(i\left(a_{2}\right)\right), & \text { if } y=\alpha
\end{array}=\left\{\begin{array}{ll}
\pi(y), & \text { if } y \in X \\
f\left(a_{2}\right), & \text { if } y=\alpha
\end{array}=p(y)\right.\right.
$$

In conclusion, $g_{1} \neq g_{2}$ and both $g=g_{1}$ and $g=g_{2}$ commutatively close the diagram

which contradicts the fact that $(X, i, \pi)$ is a final model. The proof is now complete.
b) $\quad " \Longleftarrow "$ Let $f$ be an surjective function. In this case, $\left(A, i d_{A}, f\right)$ is obviously a model for $f$ and we will now show that it is an initial model. Let $(Y, j, p)$ be another model. We want there to be a unique function $g: A \rightarrow Y$ such that $i d_{A} \circ g=j$ and $p \circ g=f$. The existence is obvious since $g=j$ satisfies the relations. The uniqueness is given by the fact that $i d_{A} \circ g=j$, and so the unique function that satisfies this is $g=j$.
$" \Longrightarrow "$ Let $f: A \rightarrow B$, assume $(X, i, \pi)$ is an initial model of $f$ and $\{-\infty, \infty\}$ two different elements which are not part of $A, B$ or $X$. Suppose $f$ is not surjective. Therefore, there exists $\alpha \in X \backslash i(A)$ (otherwise, $i$ is surjective, and so bijective and $f=\pi \circ i$ which implies that $f$ is a composition of surjective functions so it is surjective, contradiction). Let $Y=X \backslash\{\alpha\} \cup$ $\{-\infty, \infty\}$. We define $j: A \rightarrow Y$ and $p: Y \rightarrow B$ such that

$$
j(a)=i(a) \in X \quad \text { and } \quad p(y)=\left\{\begin{array}{ll}
\pi(y), & \text { if } y \in X-\{\alpha\} \\
\pi(\alpha), & \text { if } y \in\{-\infty, \infty\}
\end{array},\right.
$$

$\forall a \in A$ and $\forall y \in Y$.

Obviously, $j$ is an injective function and $p$ is surjective because

$$
p(Y)=\pi(X \backslash\{\alpha\}) \cup\{\pi(\alpha)\}=\pi(X)=B .
$$

Moreover

$$
(p \circ g)(a)=p(j(a))=p(\underbrace{i(a)}_{\in X \vee\{\alpha\}})=\pi(i(a))=f(a),
$$

so $(Y, j, p)$ is a model for $f$. We now define $g_{1}, g_{2}: X \rightarrow Y$ to be the functions

$$
g_{1}(x)=\left\{\begin{array}{ll}
x, & \text { if } x \in X \backslash\{\alpha\} \\
-\infty, & \text { if } x=\alpha
\end{array} \quad \text { and } \quad g_{2}(x)=\left\{\begin{array}{ll}
x, & \text { if } x \in X \backslash\{\alpha\} \\
\infty, & \text { if } x=\alpha
\end{array} .\right.\right.
$$

It is straightforward that $g_{1} \neq g_{2}$, since $\infty \neq-\infty$. We shall now prove that $g_{1}$ and $g_{2}$ are morphisms of models which contradicts the fact that $(X, i, \pi)$ is an initial model ( $X$ is initial $\Longrightarrow g_{1}=g_{2}$. First of all,

$$
\left(g_{1} \circ i\right)(a)=g_{1}(\underbrace{i(a)}_{\in X \backslash\{a\}})=i(a)=j(a), \forall a \in A \text {, }
$$

so $g_{1} \circ i=j$ and, in an analogous way, $g_{2} \circ i=j$. Now, for $p \circ g_{1}=p \circ g_{2}=\pi$ we have to split our analysis into two parts:

- If $x \in X \backslash\{\alpha\}$, we have

$$
g_{1}(x)=g_{2}(x)=x \Longrightarrow p\left(g_{1}(x)\right)=p\left(g_{2}(x)\right)=p(x)=\pi(x), \forall x \in X-\{\alpha\} .
$$

- If $x=\alpha$, we have $g_{1}(\alpha)=-\infty$ and $g_{2}(\alpha)=\infty$, so

$$
p\left(g_{1}(\alpha)\right)=p(-\infty)=\pi(\alpha)=p(\infty)=p\left(g_{2}(\alpha)\right)
$$

which shows that $p \circ g_{1}=p \circ g_{2}=\pi$.

In conclusion, $g_{1} \neq g_{2}$ and both $g=g_{1}$ and $g=g_{2}$ commutatively close the diagram

which contradicts the fact that $(X, i, \pi)$ is an initial model. The proof is now complete.

## 3 Generalization to groups

The term model used for sets can be generalized to groups in a natural way, by considering the functions to be group homomorphisms and the sets to be groups. The same problem is addressed in this case. We shall use the following definitions:

Definition 3.1. Let $G$ and $H$ be two groups. We define the free product of $G$ and $H$, denoted by $G \star H$, to be the group made up of all the finite words formed with elements of $G$ and $H$ in the reduced form.

$$
G \star H=\left\{g_{1} h_{1} g_{2} h_{2} \ldots \mid g_{i} \in G, h_{i} \in H\right\}
$$

In terms ofgroup presentations, if $G=\left(S_{G} \mid R_{G}\right)$ and $H=\left(S_{H} \mid R_{H}\right)$, , his definition is equivalent to

$$
G \star H=\left(S_{G} \cup S_{H} \mid R_{G} \cup R_{H}\right) .
$$

The notations used are standard, see [2, Chapter 11].
Definition 3.2. Let $G$ and $H$ be two groups with $G \cap H=K$. We define the amalgamated free product of $G$ and $H$ with subgroup $K$, denoted by $G \star_{K} H$ to be the group $G \star H / N$, where $N$ is the normal closure of $K$ in $G \star H$.

For basic concepts on amalgamated free products see [3, Chapter I.11.].
Remark 3.1. There is at least one model for any homomorphism $f$.
Indeed, let $f: A \rightarrow B$ be a group homomorphism. Consider $X=A \star B$ (see Definition 3.1.) and define $i: A \rightarrow X$ and $\pi: X \rightarrow B$ such that

$$
i(a)=a \quad \text { and } \quad \pi\left(a_{1} b_{1} a_{2} b_{2} \ldots\right)=f\left(a_{1}\right) b_{1} f\left(a_{2}\right) b_{2} \ldots
$$

$\forall a \in A$ and $\forall a_{i} \in A, b_{i} \in B$.
It is obvious that both $i$ and $\pi$ are group homomorphisms. Since $\pi(b)=b, \forall b \in B, \pi$ is surjective, $i$ is injective by definition and $\pi(i(a))=\pi(a)=f(a)$. Therefore, $\pi \circ i=f$. We have thus proved that any group homomorphism $f$ has at least one model.

Theorem 3.1. Let $f: A \rightarrow B$ be a group homomorphism. Then:
a) $f$ has a final model if and only if $f$ is injective.
b) $f$ has an initial model if and only if $f$ is surjective.

Proof. a) $\quad " \Longleftarrow "$ Let $f$ be an injective group homomorphism. In this case, $\left(B, f, i d_{B}\right)$ is obviously a model for $f$ and the fact that it is final is trivial and analogous to the proof for sets in Theorem 2.1. a).
$" \Longrightarrow$ " Let $f: A \rightarrow B$ be a homomorphism and assume $(X, i, \pi)$ is a final model of $f$. Suppose $f$ is not injective. Therefore, $\operatorname{Ker}(f) \neq\left\{e_{A}\right\}$, so there is an element $a \in A, a \neq e_{A}$ for which $f(a)=e_{B}$. Let $Y=X \star<a>$ (see Definition 3.1.). We define $j: A \rightarrow Y$ and $p: Y \rightarrow B$ such that

$$
j(a)=i(a) \quad \text { and } \quad p\left(x_{1} a_{k_{1}} x_{2} a_{k_{2}} \ldots\right)=\pi\left(x_{1} x_{2} \ldots\right)
$$

$\forall a \in A$ and $\forall x_{i} \in X$.
With this construction, $(Y, j, p)$ is a model for $f$ as $\forall a \in A$,

$$
(p \circ j)(a)=p(j(a))=p(\underbrace{i(a)}_{\in X})=\pi(i(a))=f(a)
$$

since $(X, i, \pi)$ is a model for $f$.
We now define $g_{1}, g_{2}: Y \rightarrow X$ as

$$
g_{1}\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)=x_{1} x_{2} \ldots \quad \text { and } \quad g_{2}\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)=x_{1}(i(a))^{k_{1}} x_{2}(i(a))^{k_{2}} \ldots
$$

First of all, from the construction it is obvious that both $g_{1}$ and $g_{2}$ are homomorphisms. Indeed, the only non-trivial fact is:

$$
g_{1}\left(\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)^{-1}\right)=g_{1}\left(\ldots a^{-k_{2}} x_{2}^{-1} a_{-k_{1}} x_{1}^{-1}\right)=\ldots x_{2}^{-1} x_{1}^{-1}=\left(g_{1}\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)\right)^{-1}
$$

The proof for $g_{2}$ follows the same steps. Then $g_{1} \neq g_{2}$, since $i(a) \neq e_{X}$ because $i$ is injective (which means that $\operatorname{Ker}(i)=e_{A}$ ). We are now going to prove that $g_{1}$ and $g_{2}$ are homomorphisms of models (i. e. the triangles are commutative) which contradicts the hypothesis that $X$ is a final model ( $X$ is final $\Longrightarrow g_{1}=g_{2}$ ). Obviously, $g_{1} \circ j=g_{2} \circ j=i$. Now, since

$$
\pi\left(g_{1}\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)\right)=\pi\left(x_{1} x_{2} \ldots\right)=p\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)
$$

and

$$
\begin{aligned}
\pi\left(g_{2}\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)\right) & =\pi\left(x_{1}(i(a))^{k_{1}} x_{2}(i(a))^{k_{2}} \ldots\right)=\pi\left(x_{1}\right) \pi\left((i(a))^{k_{1}}\right) \pi\left(x_{2}\right) \pi\left((i(a))^{k_{2}}\right) \cdots= \\
& =\pi\left(x_{1}\right) \pi\left(x_{2}\right) \cdots=\pi\left(x_{1} x_{2} \ldots\right)=p\left(x_{1} a^{k_{1}} x_{2} a^{k_{2}} \ldots\right)
\end{aligned}
$$

we have proved that $g_{1} \circ j=g_{2} \circ j=i$ and $\pi \circ g_{1}=\pi \circ g_{2}=p$.
In conclusion, $g_{1} \neq g_{2}$ and both $g=g_{1}$ and $g=g_{2}$ commutatively close the diagram

which contradicts the fact that $(X, i, \pi)$ is a final model. The proof is now complete.
b) $\quad " \Longleftarrow "$ Let $f$ be a surjective group homomorphism. In this case, $\left(A, i d_{A}, f\right)$ is obviously a model for $f$ and and the fact that it is initial is trivial and analogous to the proof for sets in Theorem 2.1 b ).
$" \Longrightarrow$ " Let $f: A \rightarrow B$ be a homomorphism and assume $(X, i, \pi)$ is an initial model of $f$. Suppose $f$ is not surjective. Therefore, $X \backslash i(A) \neq \varnothing$. Consider $X^{\prime}$ a group such that $X^{\prime} \cap$ $X=i(A)$ and $X^{\prime} \cong X$ through the isomorphism $\phi$ which keeps $i(A)$ fixed. Let $Y$ be the amalgamated free product of the groups $X$ and $X^{\prime}$ with subgroup $i(A)$, i.e. $Y=X \star_{i(A)} X^{\prime}$ (see Definition 3.2). We define $j: A \rightarrow Y$ and $p: Y \rightarrow B$ such that

$$
j(a)=i(a) \quad \text { and } \quad p\left(x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \ldots\right)=\pi\left(x_{1} \phi^{-1}\left(x_{1}^{\prime}\right) x_{2} \phi^{-1}\left(x_{2}^{\prime}\right) \ldots\right)
$$

$\forall a \in A$ and $\forall x_{i} \in X, \forall x_{i}^{\prime} \in X^{\prime}$.
With this construction, $(Y, j, p)$ is a model for $f$ as $\forall a \in A$,

$$
(p \circ j)(a)=p(j(a))=p(\underbrace{i(a)}_{\in X})=\pi(i(a))=f(a),
$$

since $(X, i, \pi)$ is a model for $f$ and $p(X)=\pi(X)=B$.
We now define $g_{1}, g_{2}: Y \rightarrow X$ as

$$
g_{1}(x)=x \quad \text { and } \quad g_{2}(x)=\phi(x)
$$

$\forall x \in X$.
It is obvious from their construction that $g_{1}$ and $g_{2}$ are homomorphisms. Then, $g_{1} \neq g_{2}$, since $X^{\prime} \neq X$ and $i(A) \neq X$. We are now going to prove that $g_{1}$ and $g_{2}$ are homomorphisms of models (i. e. the triangles are commutative) which contradicts the hypothesis that $X$ is an initial model ( $X$ is initial $\Longrightarrow g_{1}=g_{2}$ ). Obviously, $g_{1} \circ i=g_{2} \circ i=j$. Now, since

$$
p\left(g_{1}(x)\right)=p(x)=\pi(x)
$$

and

$$
p\left(g_{2}(x)\right)=p(\underbrace{\phi(x)}_{\epsilon X^{\prime}})=\pi\left(\phi^{-1}(\phi(x))\right)=\pi(x),
$$

we have proved that $g_{1} \circ i=g_{2} \circ i=j$ and $p \circ g_{1}=p \circ g_{2}=\pi$.
In conclusion, $g_{1} \neq g_{2}$ and both $g=g_{1}$ and $g=g_{2}$ commutatively close the diagram

which contradicts the fact that $(X, i, \pi)$ is an initial model. The proof is now complete.

Acknowledgement. I would like to thank my professor, Dr. Militaru Gigel, who proposed me this problem (see [4]).

## 4 References

[1] Enderton, H.B. (1977). Elements of Set Theory, New York: Academic Press.
[2] Rotman, J.J. (1999). An Introduction to the Theory of Groups, New York: Springer-Verlag.
[3] Lyndon R.C., Schupp, P.E. (2001). Combinatorial Group Theory, Berlin: Springer-Verlag.
[4] Militaru, G. Note de curs, Algebra (in romanian) available at https://gigelmilitaru.wordpress.com/2020/08/28/algebra-anul-i-semestru-1-2020-2021/


[^0]:    *Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Splaiul Independenței 313, RO-060042 Bucharest 6, Romania and Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-010014 Bucharest 1, Romania andrei.tiberiu.pantea@gmail.com

