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Abstract. A model of a function f between two non-empty sets is defined to
be a factorization f = m o i, where x is a surjective function and i is an injective
function. In this note we shall prove that a function f is injective (respectively
surjective) if and only if it has a final (respectively initial) model. A similar result,
for groups, is also proven.
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1 Introduction and preliminary remarks

In this paper we consider the sets taken into account to be non-empty and groups denoted
differently to be disjoint. For basic concepts on sets and functions see [1]. It is a well known
fact that any function f: A — B can be written as the composition of a surjective function
followed by an injective function. Indeed, f = f’oidpg, where f': A— Im(f) is the restriction
of f to Im(f) is one such factorization. Moreover, it is an elementary exercise to prove that
this factorization is unique up to an isomorphism: i.e. if f =jiom, i: A— X, m: X — B is
another factorization for f, then we easily see that X = i~! (Im(f)) and that 7 = i "' o f’. The
purpose of this note is to study the dual problem. Let f: A — B be a function. We shall define
a model of the function f to be a triple (X,7,7) made up of a set X, an injective function
i: A— X and a surjective function 7: X — B such that f = w01, that is, the following diagram
is commutative.

A model (X, i,n) for the function f is called an initial model if for any other model (Y, j, p)
of the function f there is a unique function g: ¥ — X such that goj =i and pog=m. A
model (X, i, ) for the function f is called a final model if for any other model (Y, j, p) of the
function f there is a unique function g: X — Y such thatgoi=jandrog = p.
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Remark 1.1. For any function f: A— B, there is at least one model.

We may consider that A and B do not have any elements in common, otherwise, just
consider a set B’ = B. Indeed, it is easy to see the remark is true if we consider X = AU B,
consider i to be the canonical injection and define

fla), ifacA
m(x) = .
b, ifbeB

2 Initial and final models of a function

The next theorem gives a new characterization of injective and surjective maps.

Theorem 2.1. Let f: A— B be a function. Then:

a) f has afinal model if and only if f is injective.

b) f has an initial model if and only if f is surjective.

Proof. a) "<="1Let f be an injective function. In this case, (B, f, idp) is obviously a model
for f and we will now show that it is a final model. Let (Y, j, p) be another model. We want
there to be a unique function g: Y — B such that go j = f and idg o g = p. The existence is
obvious since g = p satisfies the relations. The uniqueness is given by the fact that idgog = p,
and so the unique function that satisfies this is g = p.

"= "Let f: A— B, assume (X,i,7) is a final model of f and a ¢ X. Suppose f is not
injective. Therefore, there are two elements of A, a; # a, such that f(a;) = f(ay). Let Y =
X u{a}. We define j: A— Y and p: Y — B such that

n(x), ifyeX

j(a)=i(a) and p(x)= )
J P {f(m), ify=a

Vace AandVyeY.
With this construction, (Y, j, p) is a model for f as Va € A,

(pep@=p(j@)=pi@) =ni@)=f(a),
since i(a) € X and (X, i, ) is a model for f. We now define g;,g2: Y — X as
N2 ifyeX

b2 ifyeX

= d = .
81y {i(al), ify=a and - &() {i(az), ify=a



Then g; # g, since i(a;) # i(ay) because i is injective. We are now going to prove that g;
and g» are morphisms of models (i. e. the triangles are commutative) which contradicts the
hypothesis that X is a final model (X is final = g; = g»). Firstly,

GoN@=g(j@)= gl(@) =i(a),
ex

Va e A, which means that g; o j = i and, analogously, g, o j = i. Now, for y € Y we have

3 ), ifyeX _m, ifyeX 3
(r gl)(J’)—ﬂ(gl(.V))_{n(i(al))’ ify=a _{f(m), ify=a =p)
and, analogously,
3 B n(y), ifyeX 3 n(y), ifyeX 3
(o g)(y) =7n(g2(0) = {n(i(az)), ify=a {f(az), ify=a p)

In conclusion, g; # g» and both g = g, and g = g» commutatively close the diagram

X U{a}

which contradicts the fact that (X, i, x) is a final model. The proof is now complete.

b) " <«="Let f be an surjective function. In this case, (A, id, f) is obviously a model for
f and we will now show that it is an initial model. Let (Y, j, p) be another model. We want
there to be a unique function g: A — Y such that idso g = j and po g = f. The existence is
obvious since g = j satisfies the relations. The uniqueness is given by the fact that idso g = j,
and so the unique function that satisfies this is g = j.

"= " Let f: A— B, assume (X,1,7) is an initial model of f and {—oo,00} two different
elements which are not part of A, B or X. Suppose f is not surjective. Therefore, there exists
a € X ~i(A) (otherwise, i is surjective, and so bijective and f = 7 o i which implies that f
is a composition of surjective functions so it is surjective, contradiction). Let Y = X ~{a} U
{—00,00}. We define j: A— Y and p: Y — B such that

, ifyeX~
j@=i@eX and p(y):{ﬂ(y) %ye {a} ,
n(a@), ify € {~o0,00}

Vae AandVyeY.



Obviously, j is an injective function and p is surjective because
plY)=n(X~{a}h) uin(a)} =n(X)=B.

Moreover,

(peg@=p(j@)=p( ia) )=7n(i(@) = f(a),
eX~{a}

so (Y, j, p) is amodel for f. We now define g1, g>: X — Y to be the functions

X, ifxe X~{a} x, ifxeX~{a}
g1(x) = ] and g (x) = ] .
—-o0o, ifx=«a oo, ifx=a

It is straightforward that g; # g2, since co # —oo. We shall now prove that g, and g, are
morphisms of models which contradicts the fact that (X, i, ) is an initial model (X is initial
— g1 = &»). Firstof all,

(g1od)(a) =gi( ia) )=ila)=ja),Vac A,
eX~{a}

so g1oi = j and, in an analogous way, g2 0i = j. Now, for po g; = po g» = m we have to split
our analysis into two parts:

e If xe X ~{a}, we have
g =g@)=x = p(g1(®)=p(gx)=p) =nrx),Yxe X~ {al
e If x = a, we have g1 (@) = —oo and g2(a) = o0, so

p(g1(@) = p(—00) = () = p(oo) = p(g2(@))

which shows that pog; = pog, =.

In conclusion, g # g» and both g = g; and g = g» commutatively close the diagram

X ~{a} U {—o0,00}

which contradicts the fact that (X, i, ) is an initial model. The proof is now complete.
O



3 Generalization to groups

The term model used for sets can be generalized to groups in a natural way, by considering
the functions to be group homomorphisms and the sets to be groups. The same problem is
addressed in this case. We shall use the following definitions:

Definition 3.1. Let G and H be two groups. We define the free product of G and H, denoted by
G x H, to be the group made up of all the finite words formed with elements of G and H in the
reduced form.

GxH= {glhlgghg...|gi €G,h; € H}

In terms of group presentations, if G = (Sg|Rg) and H = (Sy|Ry), this definition is equivalent
to
GxH=(S¢cUSy|lRGUREY).

The notations used are standard, see [2, Chapter 11].

Definition 3.2. Let G and H be two groups with Gn H = K. We define the amalgamated free
product of G and H with subgroup K, denoted by G x g H to be the group Gx H/ N, where N is
the normal closure of K in G x H.

For basic concepts on amalgamated free products see [3, Chapter [.11.].
Remark 3.1. There is at least one model for any homomorphism f.

Indeed, let f: A— B be a group homomorphism. Consider X = A x B (see Definition 3.1.)
and definei: A— X and n: X — B such that

i(@=a and n(abiazb,...)= f(a1))b1f(a))b...,

VYae Aand Va; € A, b; € B.

It is obvious that both i and 7 are group homomorphisms. Since 7#(b) = b,Vb € B, 7 is
surjective, i is injective by definition and 7 (i(a)) = n(a) = f(a). Therefore, moi = f. We have
thus proved that any group homomorphism f has at least one model.

Theorem 3.1. Let f: A— B be a group homomorphism. Then:

a) f has afinal model if and only if f is injective.

b) f has an initial model if and only if f is surjective.

Proof. a) " <= " Let f be an injective group homomorphism. In this case, (B, f,idp) is
obviously a model for f and the fact that it is final is trivial and analogous to the proof for sets
in Theorem 2.1. a).

"=— "Let f: A— Bbeahomomorphism and assume (X, i, ) is a final model of f. Suppose
f is not injective. Therefore, Ker(f) # {ea}, so there is an element a € A, a # e, for which
f(a) = ep. Let Y = Xx < a > (see Definition 3.1.). We define j: A— Y and p: Y — B such
that

j@=i(a) and p(xiagx2ai,...)=n(x1x2...),



Vae Aand Vx; € X.
With this construction, (Y, j, p) is amodel for f as Va € A,

(pop@=p(j@)=pli@)=ni@)=f(a,

——
eX
since (X, i,) is a model for f.
We now define g1,8,: Y — X as
gl(xlaklxgakz...):xlxz... and gg(xlaklxzakz...)le (i(a))klxg(i(a))kz....

First of all, from the construction it is obvious that both g; and g, are homomorphisms.
Indeed, the only non-trivial fact is:

-1 -1
g1 ((xlaklxgakz...) ) =g (...a‘kzxgla_klxl_l) = ...xz_lxl_1 = (gl (xlaklxgak2 )) .

The proof for g, follows the same steps. Then g; # g2, since i(a) # ex because i is injective
(which means that Ker (i) = e4). We are now going to prove that g; and g, are homomorphisms
of models (i. e. the triangles are commutative) which contradicts the hypothesis that X is a
final model (X is final = g; = g»). Obviously, g1 0 j = g2 o j = i. Now, since

n(gl(xlaklxzakz )) =m(X1X2...) = p(xlaklxzak2 .2)
and

7 (g2tak xa®. ) = 2t (@) x (@) = 0 (@) ) 0o ((@))-+ =

=a(x)r(x) -=n(Xx1X2...) = p(xlaklxzakz...),

we have proved that g1oj=groj=iandnog =mogy = p.
In conclusion, g # g» and both g = g; and g = g» commutatively close the diagram

Xx<a>

which contradicts the fact that (X, i, ) is a final model. The proofis now complete.

b) "<«<="Let f be asurjective group homomorphism. In this case, (A, idy, f) is obviously
amodel for f and and the fact that it is initial is trivial and analogous to the proof for sets in
Theorem 2.1 b).



"= "Let f: A— B be a homomorphism and assume (X, i,7) is an initial model of f.
Suppose f is not surjective. Therefore, X ~i(A) # @. Consider X’ a group such that X' n
X = i(A) and X' = X through the isomorphism ¢ which keeps i(A) fixed. Let Y be the
amalgamated free product of the groups X and X’ with subgroup i(A), i.e. Y = X i(A) X'
(see Definition 3.2). We define j: A— Y and p: Y — B such that

j@=ila) and p(xxjxex,...)= n(xl(p_l(x'l)xg(p_l(xé)...),

Vae Aand Vx; € X, Vx, € X'.
With this construction, (Y, j, p) is a model for f as Va € A,

(poa=p(j@)= p(@) =7 (i(a) = f(a),
eX
since (X, i, ) is amodel for f and p(X) = n(X) = B.
We now define g1,82: Y — X as

gi(x)=x and g (x)=¢x),

VxeX.

It is obvious from their construction that g; and g» are homomorphisms. Then, g # g,
since X' # X and i(A) # X. We are now going to prove that g; and g, are homomorphisms
of models (i. e. the triangles are commutative) which contradicts the hypothesis that X is an
initial model (X is initial = g; = g»). Obviously, g1 0i = g»0i = j. Now, since

p(g1(x) = px) =n(x)

and
p(g2(0) = p(¢px)) =7 (¢~ P(x)) =),
——
ex’
we have proved that gjci =groi=jand pog)y = pogr =m.
In conclusion, g; # g2 and both g = g, and g = g» commutatively close the diagram

X*i(A) X'

which contradicts the fact that (X, i, ) is an initial model. The proof is now complete.
O

Acknowledgement. I would like to thank my professor, Dr. Militaru Gigel, who proposed
me this problem (see [4]).



4 References

[1] Enderton, H.B. (1977). Elements of Set Theory, New York: Academic Press.
[2] Rotman, J.J. (1999). An Introduction to the Theory of Groups, New York: Springer-Verlag.
[3] LyndonR.C., Schupp, PE. (2001). Combinatorial Group Theory, Berlin: Springer-Verlag.

[4] Militaru, G. Note de curs, Algebra (in romanian) available at

https://gigelmilitaru.wordpress.com/2020/08/28/algebra-anul-i-semestru-1-2020-2021/



	Introduction and preliminary remarks
	Initial and final models of a function
	Generalization to groups
	References

